반도체의 P-N 접합과 Scanning Photo Current Microscopy

세종대학교 서용호

도핑에 의한 반도체의 전기전도도 증가 Conductivity of Semiconductor by doping

- 불순물 Impurities (or doping) of semiconductor
 - \rightarrow affect the electrical, optical, and magnetic properties
- 도핑 doping ($10^5:1$, ~10 ppm) increases conductivity by factor of 10^3 (at R.T.)
 - Acceptor(3족 원소) : (p-type) Si, Ge + B (IV) (III)

Excess hole

• Donor (5족 원소): n-type Si, Ge + P, As, Sb (IV) (V) (arsenic) (antimony)

Excess electron from As atom

Donor(도너) state

- Donor state: 전도대 근처에서 잉여전자가 유도됨
- Donor electrons move under Coulomb potential $\frac{e}{\epsilon r}$ between charges in the medium (ϵ : static dielectric constant)
- → Energy level of extra electron is modified by donor

 잉여전자와 3족 이온간의 쿨롱에너지가 추가되 어 유전율 ɛ의 실리콘 결정내에서 에너지 밴드 구조에 에너지 대역이 추가됨.

Donor energy level

- Extra electron from donor contributes to conduction, as it is ionized
- Donor energy level (≡ E_d) : ionization energy of extra electron in dielectric medium (ε) (Si lattice)
- from Bohr model $e^2 \rightarrow e^2/\epsilon$; $m \rightarrow m_e$ (effective mass of el.)

Acceptor(억셉터) States

• Host material : Group 4 (Si, Ge) Impurity : group 3 (B, Al, Ga, In) 억셉터: 전자를 받아들일 수 있는 빈 자리 (정공) "acceptor" : accepts an electron in medium induces a positive hole 정공

Acceptor ionization energy ($E_a = \frac{13.6}{\epsilon^2} \frac{m_h}{m}$) : (10~50 meV) Si vs Ge (ϵ_{Si} =11.7, ϵ_{Ge} =15.8)

→상온에서 k_BT=1.38 × 10⁻²³(J/K) × (295K) ~ 26meV

열적 이온화 "Thermally ionization" of donor or acceptor → important for the electrical conductivity

P-N junction band diagram

P-N junction Diode

- P-N junction Diode Equation $I = I_0(e^{\frac{qV}{k_BT}} 1)$
- I_0 : 역방향 포화전류 "reverse bias saturation current", the diode leakage current density in the absence of light; 진성 캐리어 농도의 제곱에 비례함 ($I_0 \propto n_i^2$)
- Diode Equation for Non-Ideal Diodes (비이상적인 다이오드)

$$I = I_0 (e^{\frac{qV}{nk_BT}} - 1) \qquad \frac{I}{I_0} + 1 = e^{\frac{qV}{nk_BT}}$$

n = ideality factor, a number between 1 and 2 which typically increases as the current decreases

For forward bias,
$$I \gg I_0$$
 $\frac{I}{I_0} \cong e^{\frac{qV}{nk_BT}}$

광전류 (photocurrent)

- 밴드갭 에너지 보다 높은 에너지의 광자(빛)이 반도체에 닿으면 전자-정공 쌍이 발생 → 바로 재결합
 → 열 발생
- 빛이 공핍층에 닿으면 Built-in 포텐셜에 의해서 서로 반대 방향으로 힘 → 전자-정공 분리 → 광전류

Scanning photocurrent imaging → local photoelectric effect in air

- 빛이 공핍층에 닿으면 전자-정공 쌍이 발생
- Built-in 포텐셜에 의해서 전자-정공 분리 → 광전류
- 광전효과 photoelectric effect : 진공에서 측정
- 실제 소자는 공기중에서 측정: photoelectric effect from pn junction measured by photocurrent mapping
- 용도(usage): 태양광소자, pn-junction 소자, LED, Image sensor, 등 다양한 광전소자 연구 개발
- 제조사(주)세종과학기기, 모델명:SPCM01

Photocurrent map and confocal image

Photocurrent

confocal

Photocurrent

Wide View

-9.97664

Expo.

142 104 250

Mxene-Si Solar Cell : fabrication process

Bare Si wafer cleaning

- 1. Acetone, Methanol, IPA, DI 15min (sonication)
- 2. BOE 5min / DI 5min 2times
- 3. DI washing many time

Bottom electrode deposition

- Ti / Pd / Ag : 50nm / 50nm / 90nm

Top coating

- BOE 5min / 상단 Si의 산화막 제거
- DI water(90℃)내에서 산화막 성장시킴 / 2hr
- UV 경화기 이용, 20분간 O₃ treatment
- Spin coating (1step : 500rpm, 10s / 2step : 2000rpm, 60s)
- Heating 100°C 10min

Annealing (tube furnace)

- At 300°C 1hr / Ar = 50 [sccm]

Top electrode deposition

- Cr / Au : 10nm / 90nm

MXene synthesis by Etching MAX

No	Process	Time		
4	Sonication	1hr		

식각 부산물 제거

No	Centrifuge RPM	Time		
5	3500rpm	1hr		

Mxene Solution 제작과정

No	Centrifuge RPM	Time
6	3500rpm	10min
7	10000rpm	10min

MXene deposition after sonication

No Sonication

Sonication 30min

Sonication 1hr

[MX in DI]	Al ₂ O ₃	AuCl ₃	Voc [V]	lsc [A]	Jsc [mA/ cm2]	FF	Efficiency	[MX in DI]	Al ₂ O ₃	AuCl ₃	Voc [V]	lsc [A]	Jsc [mA/ cm2]	FF	Efficiency
6ml	1nm	5mM	0.3755	0.0168	18.6519	38.4932	2.6964	6ml	2nm	5mM	0.4819	0.0176	19.6004	35.6042	3.3628
6ml	1nm	10mM	0.3513	0.0164	18.2374	33.3097	2.1344	6ml	2nm	10mM	0.4854	0.0171	19.0241	32.5176	3.0031

Solar simulator measurement

No.	SiO ₂ growth	[Mxene : DI]	Voc [V]	lsc [A]	Jsc [mA/cm2]	FF	Efficiency	
S1	2hr	[1:2]	0.2546	0.0061	6.8141	17.6482	0.3062	
S2	2hr	[1:5]	0.2727	0.0121	13.4591	22.6547	0.8315	

Ultra large area scanning with stability

- MXene based solar cell with busbar electrodes
- 9 camera images are patched showing wide area: 600 um x 450 um

Failure analysis: Degradation by Photon irradiation

• MXene solar cell (thin layer diluted with 4ml DI water)

1st image 56 x 44 um

2nd image 56 x 44 um

3rd image (30min later)

50 x 38 um

4th image (30min later) 50 x 38 um

5th image (30min later) 50 x 38 um

Failure analysis: defect on Si solar cell

defect causes low photocurrent

Hidden Electrode located below

Degradation by Photon irradiation (Si vs MXene)

Si solar cell

Photocurrent near electrodes

- For thin MXene layer high photocurrent density degrades MXene
- Serious degradation at narrow current path

Current Profiling from asymmetric electrodes

High resolution photocurrent map images (MXene solar cells)

 $25 \ X \ 25 \ \mu m^2$

 $26 \ x \ 21 \ \mu m^2$

 $13 \ x \ 12 \ \mu m^2$

10 x 10 μm²

2D materials based nano device

• Homo P-N junction with semi-floating gate device

Transport measurement of P-N homojunction device

Photocurrent images of Nano device

210303 s1 semi-floating(G)

MoS2/WSe2/hBN Heterostructure

width:47um height:42um

Reflective image

Reflective

Photo Current bias 0.5v

Confocal image

Photo Current

Images depending on bias voltages (V_b)

Confocal image

Line by line plotting

 $V_{\rm b} = 0.8 \ V$

PhotoCurrent Map

Current path shifted after repeated measurements

Conclusion

- Scanning Photocurrent microscope can be utilized for analyzing photoelectric devices like solar cell, P-N diode, nano device, etc.
- Large scale uniformity test was demonstrated for MXene base solar cell device.
- Nano scale P-N homo junction device was analyzed with SPCM